solid.mcv.fun.Rd
A screening and one-step linearization infused DAC
solid.mcv.fun(dat.list, niter, ridge)
dat.list | dataset |
---|---|
niter | number of iterations |
ridge | using ridge penalty for initial value |
Modified cross validation for SOLID method
To assess the accuracy of a predictive re- gression model, we develop a modified cross-validation (MCV) that utilizes the side products of the SOLID hence substantially reduce the computational burden. Compared with existing DAC methods, the MCV procedure is the first effort to make inference on accuracy.
auc.mcv
returns auc obtained by modified cross validation
auc.mcv.se
returns the standard error for auc obtained by modified cross validation
roc.mcv.mtx
returns the accuracy table obtained by modified cross validation
Hong, C., Wang, Y. and Cat T. (2019). A Divide-and-Conquer Method for Sparse Risk Prediction and Evaluation (under revision).
Chuan Hong
N=1e5 p.x=50 K=10 n=N/K niter=3 cor=0 b0=-8 bb = c(1, 0.8, 0.4, 0.2, 0.1) beta0 = c(b0, bb, rep(0, p.x - length(bb))) dat.list=sim.list.fun(nn=N,K=10,p.x=50,cor=0.2,beta0) SOLID.mcv=solid.mcv.fun(dat.list, niter=3)#> Warning: collapsing to unique 'x' values#> Warning: collapsing to unique 'x' values#> Warning: collapsing to unique 'x' values