Introduction
The GroupEff_par function estimates group effects using
embeddings and structured input data. This vignette demonstrates the
usage of the GroupEff_par function with example data
included in the package.
Load the Data
Load the required datasets for the example:
# Load required data
data(S.1)
data(S.2)
data(X.group.source)
data(X.group.target)
data(U.1)
data(U.2)Prepare Variables
Prepare the variables required for the GroupEff_par
function:
# Extract names and create name lists
names.list.1 <- rownames(S.1)
names.list.2 <- rownames(S.2)
full.name.list <- c(names.list.1, names.list.2)
# Initialize beta matrix
beta.names.1 <- unique(c(colnames(X.group.source), colnames(X.group.target)))
beta.int <- matrix(0, 400, 10)  # Replace with appropriate dimensions
rownames(beta.int) <- beta.names.1Run the Function
Run the GroupEff_par function:
  GroupEff_par.out <- GroupEff_par(
    S.MGB = S.1, 
    S.BCH = S.2, 
    n.MGB = 2000, 
    n.BCH = 2000, 
    U.MGB = U.1, 
    U.BCH = U.2, 
    V.MGB = U.1, 
    V.BCH = U.2, 
    X.MGB.group = X.group.source, 
    X.BCH.group = X.group.target,
    n.group = 400, 
    name.list = full.name.list, 
    beta.int = beta.int, 
    lambda = 0, 
    p = 10, 
    n.core = 2
  )Examine the Output
Explore the structure and key components of the output:
# View structure of the output
str(GroupEff_par.out)
# Print specific components of the result
cat("\nEstimated Group Effects:\n")
print(GroupEff_par.out$effects[1:5, 1:3])  # Show the first 5 rows and 3 columns of effects
cat("\nRegularization Path:\n")
print(GroupEff_par.out$path)