Introduction
The GroupEff_par
function estimates group effects using
embeddings and structured input data. This vignette demonstrates the
usage of the GroupEff_par
function with example data
included in the package.
Load the Data
Load the required datasets for the example:
# Load required data
data(S.1)
data(S.2)
data(X.group.source)
data(X.group.target)
data(U.1)
data(U.2)
Prepare Variables
Prepare the variables required for the GroupEff_par
function:
# Extract names and create name lists
names.list.1 <- rownames(S.1)
names.list.2 <- rownames(S.2)
full.name.list <- c(names.list.1, names.list.2)
# Initialize beta matrix
beta.names.1 <- unique(c(colnames(X.group.source), colnames(X.group.target)))
beta.int <- matrix(0, 400, 10) # Replace with appropriate dimensions
rownames(beta.int) <- beta.names.1
Run the Function
Run the GroupEff_par
function:
GroupEff_par.out <- GroupEff_par(
S.MGB = S.1,
S.BCH = S.2,
n.MGB = 2000,
n.BCH = 2000,
U.MGB = U.1,
U.BCH = U.2,
V.MGB = U.1,
V.BCH = U.2,
X.MGB.group = X.group.source,
X.BCH.group = X.group.target,
n.group = 400,
name.list = full.name.list,
beta.int = beta.int,
lambda = 0,
p = 10,
n.core = 2
)
Examine the Output
Explore the structure and key components of the output:
# View structure of the output
str(GroupEff_par.out)
# Print specific components of the result
cat("\nEstimated Group Effects:\n")
print(GroupEff_par.out$effects[1:5, 1:3]) # Show the first 5 rows and 3 columns of effects
cat("\nRegularization Path:\n")
print(GroupEff_par.out$path)