Generate federate-learning coefficients

survmaximin_fed(B_all, Sigma_all, delta = 0)

Arguments

B_all

A p (number of variables) * L (number of sites) numeric matrix.

Sigma_all

A list containing the data covariance matrix for each site.

delta

Default 0; the ridge penalty parameter.

Value

A list with each element as below, being the estimated results for each site:

beta.estEstimated beta coefficients for the target site.
weightA vector containing trained weights for each source site.

Examples

data(B_all); data(Sigma_all) output <- survmaximin_fed(B_all, Sigma_all, delta=0.5) beta.maximin <- output$beta.est