Generate transfer-learning survmaximin coefficients

survmaximin(B_source, Sigma_target, delta = 0)

Arguments

B_source

A p (number of variables) * L (number of source sites) numeric matrix.

Sigma_target

Data covariance matrix for the target site.

delta

Default 0; the ridge penalty parameter.

Value

A list with the following components:

beta.estEstimated beta coefficients for the target site.
weightA vector containing trained weights for each source site.

Examples

data(B_source); data(Sigma_target) output <- survmaximin(B_source, Sigma_target, delta=0.5) beta.maximin <- output$beta.est